Lösung zur Vorüberlegung Schritt 2:

Wir wissen aus der Physik, dass man die (Durchschnitts-) Geschwindigkeit aus dem Quotienten von zurückgelegter Strecke und der hierfür benötigten Zeit errechnet. Kurz: $\overline{v} = \frac{\Delta s}{\Delta t}$.

Für die Schwimmstrecke bezeichnen wir Δs mit s_1 – die zugehörige Zeit Δt mit t_1 . Aufgelöst nach der Zeit erhalten wir $t_1 = \frac{s_1}{v_1}$.

Analog ergibt sich für den zweiten Zeitabschnitt der Ausdruck $t_2 = \frac{s_2}{v_2}$.

Wir erhalten für die Gesamtzeit den Ausdruck

$$t_{ges.} = t_1 + t_2 = \frac{s_1}{v_1} + \frac{s_2}{v_2}$$

In unserer Aufgabe soll die Zeit möglichst klein sein. Damit entspricht der rechte Ausdruck dem *Funktionsterm unserer Zielfunktion*.

Die beiden Geschwindigkeiten können wir durch die Angaben in der Aufgabenstellung ersetzten – nicht aber die Strecken s_1 und s_2 . An dieser Stelle benötigen wir die **Nebenbedingungen** (\rightarrow siehe Vorüberlegung 3).